
02 NFAs and Regular Language Closures

Ryan Bernstein

1 Introductory Remarks

• Again, for anybody who wasn’t here last time, homework 1 is available on the course web site. It’s
due on Thursday

1.1 Recapitulation

Last lecture, we introduced the deterministic finite automaton, which was the simplest type of abstract
machine that we’ll be constructing in this class. Like all of the machines we’ll be looking at, DFAs take
strings as input and either accept or reject them depending on whether or not those strings are in the
language of the machine.

DFAs are drawn as a collection of states, some of which are “accepting” or “final” states, and transitions
between those states. Computation in a DFA begins at the start state, and we follow a transition to
another state on each character in the input string.

We need to formalize a DFA if we want to represent it in a computer. To do so, we say that a DFA is a
5-tuple, (Q,Σ, δ, q0, F), where:

• Q is a set of states

• Σ is the alphabet of the language that the machine decides

• δ : (Q× Σ)→ Q is the transition function. It takes a state/input pair and returns another state

• q0 is the start state. q0 ∈ Q.

• F is the set of accepting states. F ⊆ Q.

2 DFA Wrap-Up

2.1 Worksheet Problem Solution

At the end of the last lecture, we looked at a worksheet problem wherein we had to prove that regular
languages were closed under complement — that is to say, if A is a regular language, then A is also a
regular language. This was an example of a proof by construction.

Last lecture, we’d established the following definition of a regular language:

A language is regular if and only if there is a DFA that decides it.

1

In CS 251, we learned that “if and only if” can be thought of as a bidirectional implication. That is to
say:

• If a DFA decides A, then A is a regular language

• If A is a regular language, then there is a DFA that decides it.

The second part is the key to this particular proof.

If A is a regular language, then there exists a DFA D = (Q,Σ, δ, q0, F) that decides it. To show that A is
also regular, we need to construct a machine D′ that decides A. Since A is the language of strings that D
rejects, we can construct D′ as follows:

D′ = (Q,Σ, δ, q0, Q− F)

In other words, since membership is determined by whether or not the last state is in F , we can create a
machine that accepts the strings rejected by D by taking our existing machine and using F (in the universe
Q) the set of final states.

Because we can transform a DFA that decides an arbitrary regular language A into a machine that decides
A, we can say that the complement of any regular language is also regular.

2.2 Fully-Specified Transition Functions

In last lecture’s discussion, we mandated that to be a DFA, our machines had to have fully-specified
transition functions — that is to say, every possible state/character pair should have a transition defined
for it. This transition is a great illustration of why. Considering the following machine, which accepts
strings in {0, 1}∗ that do not contain the substring 010:

q0 q1 q2
0

1

0

1

1

This machine doesn’t contain a fully-specified transition function, since it doesn’t define what to do when
we see a 0 from q2. A reasonable interpretation might be that we should crash on any state/input pair for
which no transition is defined.

If we did this, though, then using the above logic to try and construct a machine that decides L(M) would
create the following machine:

q0 q1 q2
0

1

0

1

1

This machine should be accepting any string that does contain the substring 010. However, it no longer
has any accepting states, which means that the language of this machine is ∅, not L(M).

2

If we mandated that the transition function be fully specified, our original machine would probably have
looked something like this:

q0 q1 q2 qerror
0

1

0

1 0

1

Σ

Replacing F with F now turns this last state from an inescapable failure to an inescapable success, and
the machine decides L(M) as expected.

If we treat unspecified transitions as auto-rejecting “crashes”, it’s easy to see that mandating a full specifi-
cation doesn’t stop us from creating a DFA for any language. If we had some machine containing undefined
transitions, we can easily make a fully-specified machine by:

• Adding a new state qerror to Q

• Adding a transition to qerror on any state/input pair for which no transition is already specified

• Adding a loop transition to qerror for any state/input pair for which qerror is already the current state

Allowing DFAs to leave out information would make constructive proofs more difficult, since without
knowing what information was included in a machine — about which we may know nothing, as in the
complement proof — we wouldn’t know what information we could use to construct a new machine.

Constructing fully-specified machines can get tedious, though. And the example that we used in our
justification for full specification brings to mind an excellent point: if we can build any machine from
which we can construct a fully-specified machine without ambiguity, then we can use that “shorthand”
machine in place of the fully-specified machine in any proof (or even any implementation).

3 Nondeterministic Finite Automata

These shorthand machines are known as nondeterministic finite automata, or NFAs. One of the things that
separates them from DFAs is exactly what we’ve been talking about: an NFA need not specify a mapping
for every possible state/transition pair.

3.1 Multiply-defined Transitions

Our definition of a deterministic function was that we had at most one output for any given input. The
determinism in our deterministic finite automata came from our requirement that the transition function
be deterministic.

It makes sense, then, for us to relax this requirement for an automaton that we call nondeterministic. In
an NFA, it’s perfectly valid to have multiple transitions defined for the same input from the same current
state. Why is this useful? Let’s look at an example.

Let’s say we’re trying to show that L = {s ∈ {a, b}∗ | s contains the substring aaa or aba} is regular. To
construct a DFA for this language, we’d have to do something like this:

3

q0 q1

q2

q3

q4
a

b a

b

a

b

a

b

Σ

It’s easy to see that DFAs like this can balloon very quickly. Along with adding branching states for
single-character differences in substrings, we also have to consider transitions between those branches each
time we see a character that we weren’t expecting.

If we can define multiple transitions for the same state/input pair, though, then we can construct an NFA
to recognize this language like this:

q0 q1 q2 q3

Σ

a a, b a
Σ

Since we have the option of looping back to the start state on every character, we can think of this machine
as searching for the substrings in question by iterating over the string’s characters c1 to c|s| and seeing if
either substring starts at ci. This approach, coupled with the fact that we don’t have to include a transition
for every state/input pair, means that we no longer have to worry about transitioning back to intermediate
states (or the start state) if we see an input that isn’t part of one substring.

This is pretty similar to a simple algorithm that we might use if we had to write a function that decided
this same question. In Python, such a function might be written like this:

def contains(string, substring):

for i in range(0, len(string) - len(substring)):

for j in range(len(substring)):

if string[i + j] != substring[j]:

continue

return true

return false

Of course, this Python implementation is doing things that a state machine can’t, since we’re looking ahead
in the string, but the idea is similar.

The difference in the number of states is pretty small, but the difference in complexity is, in my opinion,
pretty immediately visually apparent.

3.1.1 Complications

Of course, having multiple transitions defined for the same state/input pair causes some complications.
How do we know which branch is “correct”?

4

The truth is, we don’t. So we take both. When we’re in a state that contains multiple transitions for
the next character, we pass the next character to all such transitions and run the remainder of the string
through all of the new states “in parallel”.

In a DFA, we took for granted the idea that our current status was some single element of Q. In a DFA,
the current computational context — which we’ll call C for the moment — is instead a set of elements of
Q. When we see a new input character x, we iterate over each q ∈ C and replace it with δ(q, x).

In a DFA, δ was a function from Q × Σ to Q. Since we still write transitions as coming from each state
individually, the domain of δ in an NFA is still Q× Σ. But now, since we produce zero (for an undefined
transition) or more next states, the range of δ is P(Q).

Let’s walk through the series of states that this machine traverses while examining the string aabbaaa:

Remaining Input States

aabbaaa {q0}
abbaaa {q0, q1
bbaaa {q0, q2}
baaa {q0}
aaa {q0}
aa {q0, q1}
a {q0, q1, q2
ε {q0, q1, q2, q3}

Note that since our current computational context is a set of states, we don’t have multiple copies of a
state in context, even when we reach the same state via multiple transitions. If we see a state/character
input pair for which no transition is defined, we simply remove the offending element from context.

3.1.2 Acceptance Criteria

If our current context consists of multiple states, how do we determine whether an NFA accepts or rejects
a string? For this, we can look back at our previous view of having one “correct” path that we follow to
completion, rather than following all multiply-defined transitions at once.

An NFA accepts a string s if any of the states in the computational context at the end of the string are
elements of F ; it rejects s if none of them are elements of F .

3.2 Epsilon Transitions

NFAs can do one other thing that DFAs can’t: they can change state without an associated change in
input. Transitions that don’t affect the input stream are known as ε-transitions. We can think of this quite
literally: they’re transitions that we follow when removing the empty string ε from the input.

When are these useful? We often use ε-transitions when combining multiple machines to recognize some
combination of languages. For instance, consider the following example:

5

S

q1 q2

r1 r2

r3

ε

ε

1

1

1

11

This machine decides L = {1k | k is even or a multiple of three}. We can consider this as a combination
of two “submachines” that decide these cases individually:

q1 q2

1

1

r1

r3

r3
1

11

3.2.1 The ε-Closure

To address the way that ε transitions alter the behavior of NFAs, we’ll now introduce the idea of an ε-
closure. The ε-closure of a state q is the set containing q and any state that can be reached from q via
nothing but ε-transitions.

Currently, the ε-closure of S is {S, q1, r1}. Let’s say now that we added another ε-transition from r1 to
some new state, t1, like so:

6

S

q1 q2

r1 r2

r3t1

ε

ε

1

1

1

11

ε

Now, the ε-closure of S is {S, q1, r1, t1}— the ε-closure extends across multiple ε-transitions. The ε-closure
of r1 is {r1, t1}. Since r1 is in the ε-closure of S, its ε-closure is a subset of the ε-closure of S.

3.2.2 Approximating ε-Transitions with Nondeterminism

We’ll now show that ε-transitions don’t allow NFAs to decide languages that they wouldn’t be able to
without them. To do this, we’ll provide an algorithm to remove ε-transitions from an NFA without
changing the language that the NFA decides.

Proof by Construction Let N be an NFA. We can construct an NFA N ′ without ε-transitions as
follows:

For each state p ∈ Q:

1. Make p an accepting state of N ′ if and only if the ε-closure of p contains an accepting state of N

2. Add a transition from p → q labeled x if and only if there is a transition labeled x from some state
in the ε-closure of p to q.

Delete all ε-transitions.

3.3 Worksheet Exercise: Building NFAs

3.4 Formalizing an NFA

An NFA is a 5-tuple (Q,Σ, δ, q0, F), where:

• Q is still a set of states

• We have to add ε to our alphabet, so we can say that ΣNFA = Σ ∪ {ε}. We often abbreviate this as
Σε.

• δ : Q× Σε → P(Q) is a transition function

7

• q0 is again the start state and an element of Q

• F is again a subset of Q consisting of final states

4 Languages that NFAs can Recognize

We introduced the NFA as a “shorthand” machine that we could use to unambiguously create a DFA the
decided the same language. For this to be true, we need to show that NFAs and DFAs are equivalent in
power — that is to say, that the set of languages that can be decided by an NFA is exactly the same as
the set of languages that can be decided by a DFA (i.e. the regular languages).

Again, from CS 251, we can think of equivalence as a bidirectional implication and prove this in two
separate steps:

1. Show that if there is a DFA that decides L, then there is also an NFA that decides L

2. Show that if there is an NFA that decides L, then there is also a DFA that decides L

4.1 Constructing an NFA from any DFA

Constructing an NFA from a DFA is trivial, since NFAs can do everything that DFAs can. A DFA can
already be thought of an NFA that never utilizes any of its nondeterministic functionality.

4.2 Constructing a DFA from any NFA

Before we begin, I should emphasize that while this algorithm will create an equivalent DFA for any
arbitrary NFA, there may be some other equivalent DFA that is more efficient (i.e. contains fewer states).
We don’t actually care about efficiency for the first three quarters of this class, so for the moment, this is
sufficient.

What is the type of each element of Q? The truth is, we don’t actually care. As long as the elements are
unique — which they must be, since Q is a set — we simply draw a circle for each item. This is possible
because the transitions are stored in δ, rather than associated with the states themselves.

What is the type of the current computational context in a DFA? Again, we don’t care, so long as it is a
single element of Q.

After removing ε transitions, we can therefore turn an NFA context into a DFA context by making every
possible set of states in the NFA into a single state in the DFA context:

• QD = P(QN)

• ΣD = ΣN

• δD(R, x) = {q ∈ P(QN) | δN (r, x) = q for some r ∈ R}

• q0D = {q0N }

• FD = {S ∈ P(QN) | S contains any element of FN}

8

4.3 Worksheet Exercise: NFA to DFA Conversion

4.4 The Result: A New Definition of Regular Languages

Since we’ve shown that NFAs and DFAs are equivalent in power, we can now relax our definition of regular
languages slightly. Before, we said that a language was regular if and only if there was a deterministic
finite automaton that decided it. We can now simply say:

A language is regular if and only if there is a finite automaton that decides it.

5 Closure Properties and the Regular Operations

We’ll now prove some more closure properties of the regular languages. While we could have done this
using DFAs, it’s much simpler using nondeterminism.

5.1 The Regular Languages are Closed under Union

This is a generalization of the procedure that we used to decide {1k | k is even or a multiple of 3} ear-
lier.

Assume that A and B are regular languages. Then there are DFAs, MA and MB, that decide them.

We can construct an NFA N that decides A∪B by adding a new start state, qs, and adding an ε transition
from qs to the start states of MA and MB.

5.2 Worksheet Exercise: The Regular Languages are Closed under Concatenation

5.3 The Regular Languages are Closed under the Kleene Closure

Let A be a regular language. Then there is a DFA D that decides it.

We can construct an NFA that decides A∗ as follows:

1. Add a new start state, qs

2. Add an ε-transition from qs to the original q0

3. Add an ε-transition from each accepting state to qs

5.4 The Regular Operations

We’ve seen now that the regular languages are closed under union, concatenation, and Kleene star. Because
of this fact, these operations are known as the regular operations.

This gives us a new way to prove regularity of a language: if I can show that a language L can be created
by composing regular operations over other known (or trivially) regular languages, then L itself is also
regular. I don’t have to construct a DFA or NFA that decides L, because I already know that I can.

9

